pora.zavantag.com Урок № Тема: Статистическое определение вероятности. Комбинаторные
страница 1

Теория вероятностей.

УРОК № 7.


Тема: Статистическое определение вероятности. Комбинаторные методы решения задач.

Цель: выработать умение решать задачи на определение частоты, статистической вероятности (с использованием основных формул комбинаторики).

Оборудование: презентация «ver_Urok№7».

Ход урока.


  1. Организационный момент.

  2. Проверка домашнего задания.

Задача №1. По статистике в городе Новинске за год из каждой 1000 автомобилистов два попадают в аварию. Какова вероятность того, что автомобилист в этом городе весь год проездит без аварий?

Решение.



Задача №2. Чтобы определить, какой цвет волос встречается в городе чаще, а какой реже, студенты за полчаса провели следующий эксперимент. Каждый выбрал свой маршрут и записывал по пути следования цвет волос каждого пятого встречного. Результаты были занесены в следующую таблицу:

Цвет волос

Брюнеты

Шатены

Рыжие

Блондины

Всего

Число людей

198

372

83

212

865

Оцените вероятность того, что выбранный наугад житель этого города будет:

а) шатеном;


б) рыжим;
в) не рыжим.

Указание. Ответ запишите в виде десятичной дроби с двумя знаками после запятой.

Решение.

а)

б)

в)



  1. Математический диктант (проверка теории).

1) Запишите формулу вычисления вероятности случайного события в классической модели. Поясните, что означает каждая буква в этой формуле.


( , А – некоторое событие, m – количество исходов, при которых событие А появляется, n – конечное число равновозможных исходов.

2) Запишите формулу вычисления вероятности случайного события в статистической модели. Поясните, что означает каждая буква в этой формуле. ( , где - число испытаний, в которых наступило событие А, N – общее число испытаний).

3) Какому условию должны удовлетворять исходы опыта, чтобы можно было воспользоваться классическим определением вероятности? (исходы равновозможные).

4) Чему равна частота достоверного события? (W(A)=1).

5) Чему равна частота невозможного события? (W(A)=0).


IV. Практикум по решению задач.

Задача 1. В партии из 100 деталей отдел технического контроля обнаружил 5 нестандартных деталей. Чему равна относительная частота появления нестандартных деталей?

Решение.

w = 5/100 = 0,05



Ответ:  = 0,05.

Задача 2. При стрельбе из винтовки относительная частота попадания в цель оказалась равной 0,85. Найти число попаданий, если всего было произведено 120 выстрелов..

Решение.



Ответ: 102 попадания.


  1. Новый материал. Вероятностная шкала.

Что вероятнее?

Попытаемся расположить на специальной вероятностной шкале события:



Чем больше у случайного события шансов произойти, тем оно более вероятно и тем правее его следует расположить на вероятностной шкале; чем меньше шансов - тем левее. Если два события, на наш взгляд, имеют равные шансы, будем располагать их в одном и том же месте шкалы друг над другом.


События: невозможные случайные достоверные



Вероятность: 0 0,5 1




Пример 1. Вова хочет вытянуть наугад одну карту из колоды с 36-ю картами. Маша, Саша, Гриша и Наташа предсказали следующее:

Решение :

BA D C




Пример 2. Что вероятнее: А={получить шестерку при подбрасывании кубика} или В={вытянуть шестерку из перетасованной колоды карт}?

шестерок в колоде - 4, а всего карт в колоде - 36.

Решение :

Пример 3. Попробуем на основе нашего опыта общения по телефону сравнить между собой степень вероятности следующих событий:

Решение :

  1. Решение задач.

Задача 3. При проведении контроля качества среди 1000 случайно отобранных деталей оказалось 5 бракованных. Сколько бракованных деталей следует ожидать среди 25 000 деталей?

Решение. По результатам контроля можно оценить вероятность

события А={произведенная деталь бракованная}. Приближенно она будет равна его частоте:

Р(А) = 0,005.

Следует ожидать такую частоту и в будущем, поэтому среди 25 000 деталей окажется около 25 000 • 0,005 = 125 бракованных.



Задача 4. Население города Калуги составляет около 400 000 жителей. Сколько калужан родились 29 февраля?

Решение. Заметим прежде всего, что вопрос задачи не совсем корректен: мы можем ответить на него лишь приближенно, ибо реальная частота даже в такой большой выборке из 400 000 жителей не обязана совпадать с вероятностью.

29 февраля бывает только в високосном году — один раз в четыре года, следовательно, для случайно выбранного человека его день рождения попадает на 29 февраля с вероятностью

Это значит, что среди 400 000 жителей Калуги следует ожидать около человека, которым приходится праздновать свой день рождения раз в четыре года.

Задача 5. Из озера выловили 86 рыб, которых пометили и отпустили обратно в озеро. Через неделю произвели повторный отлов, на этот раз поймали 78 рыб, среди которых оказалось 6 помеченных. Сколько приблизительно рыб живет в озере?

Решение:


86/N=6/78

Сравнивая вероятности всех возможных исходов эксперимента, можно предсказывать, каким из них эксперимент закончится скорее всего. Обратите внимание, что мы говорим «скорее всего», а не «наверняка» — ведь любой статистический прогноз может оказаться ошибочным.

VII. Домашнее задание.

Практическое задание. В письменном тексте одной из «букв» считается пробел между словами. Найдите частоту просвета в любом газетном тексте.



 
страница 1
скачать файл

Смотрите также:
Урок № Тема: Статистическое определение вероятности. Комбинаторные методы решения задач
57.36kb. 1 стр.

"Статистическое оценивание и прогноз"
39.57kb. 1 стр.

Урок международная конференция по теме
188.37kb. 1 стр.

© pora.zavantag.com, 2018